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Many problems related to the study of kinetics of introducing a new phase into a meta- 
stable master medium are solved on the basis of concepts of formation and subsequent evolu- 
tion of the system of nuclei of the new phase. As examples one can quote studies of pro- 
cesses of massive crystallization [i-9], gas condensation [10-12], and phase stratification 
of colloids [13, 14]. All these problems are mathematically formulated identically with 
the use of a size distribution density of new phase formation. For a long time the varia- 
tions in the distribution function were described by means of the continuity equation in the 
size space [1-3, 6, 8-14] with corresponding boundary conditions, reflecting the appearance 
of supercritical nuclei, and including the energy or material balance in the system. For 
homogeneous phase formation, however, a similar approach provides a discontinuous solution 
for the distribution function, while at the same time the experimental investigations indicate 
a continuous spectrum distributed over sizes [15-17]. These results lead to the necessity of 
including fluctuations in the rate of growth of a single isolated size. The problems gen- 
erated have been investigated quite in detail for the kinetic regime of rate of formation 
for various nucleation types [4, 5, 7]. 

The formation phase of the basic mass of the new phase is treated below for the diffu- 
sion regime, for which the growth in isolated extractions is limited by the diffusion ma- 
terial supply from the parent metastable medium to the surface of separation. The shape of 
the new phase is assumed to be spherical, while for the medium it is concentration-super- 
saturated. 

In treating fluctuations in the rate of growth of the distribution function of separate 
sizes f(t, r) varies according to the Fokker-P!anck evolution equation 

of O ( d r )  0 2 
o-7 + ~ ~ ! = Or~ (B/) (1)  

(B is the effective diffusion coefficient along the radius axis). The distribution func- 
tion is normalized by the formation number of the new phase per unit volume N(t). 

The initial and boundary conditions for Eq. (i) are 

f(O, r) = 0 ,  r > r , ,  (2 )  

where  r ,  i s  t h e  c r i t i c a l  n u c l e u s  r a d i u s ,  A~ i s  t h e  a b s o l u t e  s u p e r s a t u r a t i o n  o f  t h e  medium 
( t h e  d i f f e r e n c e  be t ween  t h e  medium d e n s i t y  and t h e  e q u i l i b r i u m  d e n s i t y ) ,  and J i s  t h e  f r e -  
quency  o f  f o r m a t i o n  o f  s u p e r c r i t i c a l  n u c l e i  p e r  u n i t  vo lume ,  in  c m - Z . s e c  -1 

I t  i s  n a t u r a l  t o  e x p e c t  t h a t  t h e  mos t  s u b s t a n t i a l  e f f e c t  o f  f l u c t u a t i o n s  in  t h e  g r o w t h  
r a t e  o c c u r s  f o r  n e a r l y  c r i t i c a l  n u c l e i  ( r  z r , ) ,  whose f o r m a t i o n  and  r a t e  a r e  d e t e r m i n e d  
by t h e  f l u c t u a t i o n  p r o c e s s  o f  o v e r c o m i n g  t h e  c r i t i c a l  p o t e n t i a l  b a r r i e r .  T h e s e  e f f e c t s  a r e  
i n v e s t i g a t e d  w i t h i n  t h e  i n i t i a l  s t a g e  o f  p h a s e  t r a n s i t i o n  - t h e  n u c l e a t i o n  s t a g e  [ 1 ] .  The 
s u b s e q u e n t  f o r m a t i o n  p h a s e  o f  f u n d a m e n t a l  mass  o f  t h e  new p h a s e  c o n s i d e r e d  h e r e  is: c h a r -  
a c t e r i z e d  by a h i g h  g e n e r a t i o n  r a t e  o f  s u p e r c r i t i c a l  n u c l e i ,  a c c o m p a n i e d  by a d e c r e a s e  in  
t h e  e x t e n t  o f  m e t a s t a b i l i z a t i o n .  I n  t h i s  p h a s e  t h e r e  a r e  no r e c o n d e n s a t i o n  p r o c e s s e s ,  s i n c e  
t h e  c h a r a c t e r i s t i c  s i z e  o f  t h e  i s o l a t e d  new p h a s e  i s  much l a r g e r  t h a n  t h e  c r i t i c a l ,  r a d i u s ,  
and the number of nearly critical nuclei is negligibly small. Therefore, similarly to [2-9, 
11-14], in the following it is permissible to put r, = 0. Finally, the given assumption 
involves some error in the shape of the distribution function in the region r z r,, but is 
inconsequential in the region of interest r >> r,. 
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The rate of growth dr/dt in the diffusion regime is 

d_r=r  r  ( 3 )  
dt r ' 

Here D is the material diffusion coefficient in the parent medium, in cmf/sec, and p is the 
new phase density. 

During the phase formation process one must satisfy the material balance condition of 
the material: 

oo 

4 [ r a / ( t ,  , ')dr (4) An (t) = Aq (0) -- -f ~P 
0 

[Aq(0) i is the initial supersaturation]. 

Substantial information concerning the dependence of the coefficient B on the process 
parameters is quite incomplete, and there exist several opinions concerning this problem. 
According to several studies [15-17], the diffusion coefficient in the size space is directly 
proportional to the function @(A~) in (3), having a quite clear physical justification. 
Therefore, to analyze the effect of fluctuations in the growth rate on the kinetics of phase 
formation we use the expression B = Be@, i.e., we neglect the possible dependence of B on the 
radius r. For B 0 § 0 one obtains the problem in the absence of fluctuations. 

Thus, Eqs. (i)-(4) form a closed problem, describing the system evolution of the gen- 
erated supercritical nuclei of the new phase without including the recondensation process, 
characteristic of the concluding stage of the phase transition. 

The system of equations (1)-(4) includes two size parameters: the material diffusion 
coefficient D and the nucleation frequency J, determining the characteristic scales of time 
and length: 

t o = [A n (0)-393D-3Jo2] '15, 

1 o = [A~q(O) p-aDJO~] I/5, J o ~ ]  150(0)1. 

U s i n g  t o and  s  we d e f i n e  d i m e n s i o n l e s s  v a r i a b l e s  and  p a r a m e t e r s  a s  

s = r/lo, x = t/to, F (x, s) = l~/ (t, r), 

4 n p_._._ff_ an(O 
q = - v  an(o)'  c ( r ) = A ~ ( 0 ) .  

In the dimensionless variables the system of equations (i)-(4) is 

o~ + c ('0 ~'s = Bee ('00"F ( 5 )  

OF (0) 
" J 0  ' 

F(O, s ) =  O, ds /dx  = c (x ) / s ;  ( 7 )  

oo 

c ( r ) =  l - - q J ' s 3 F ( L s ) d s ,  c ( O ) =  ( 1. 8 ) 

0 

Analogously [18] let us introduce new functions 

~ (~, s) = F (~'s ~)' 0 (~) = .t c (~) d~. ( 9 ) 
0 

U s i n g  ( 9 )  i n  ( 5 ) - ( 7 ) ,  t h e  f o l l o w i n g  b o u n d a r y  v a l u e  p r o b l e m  i s  o b t a i n e d  f o r  t h e  f u n c t i o n  u 

Ou + Ou 02u 
o'~ -[- _ _  (1 - -  2 B e ) ~ - s  = B e  o P '  

u I 
- -  - -  s 7s  ]s=o ~ Bo c (.~) oro~ 

which is conveniently solved by means of the Laplace transformation in the variable 0. De- 
noting by the subscript p the Laplace transform of the Corresponding quantities, We have the 
equation 
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d2up ( ~.~o) l dup p ,,,ds 2 + 2-- s ds Bouv= O, 

r e p r e s e n t i n g  a B e s s e l  e q u a t i o n  [ 1 9 ] ,  whose g e n e r a l  s o l u t i o n  i s  

UP(S) = sV [C1" ( S V - ~ 0 )  + C2Kv ( S ~/~oo) ]' 

where Iv(x) and Kv(x) are the Bessel function of an imaginary argument and the Macdonald 
function, and v = (I/B 0 - 1)/2. 

Using the obvious condition of absence of a separate infinitely large radius, i.e., 
Up(~) = 0, we obtain C z = 0, since the function Iv(x) is increasing without bound. Deter- 
mining the coefficient C 2 
the solution 

from the boundary condition (i0), for the transform Up(S) we find 

s 7 v 

2vr (v + t) BoJ o [c (~)Jv" 
~ (~) = 

(10)  

Performing the inverse transformation on the basis of [19] 

2ov§ ' 

for the distribution function F(~, s) we have the solution 

0(~) 
s2v+~ I J { c ( $ ) l  { s 2 }  d~ ( l l a )  

F ( z , s ) =  22v+lF(v@t) Bo+ 1 , c~)~ exp --4Bo[O-[~)_~] [O(~)_~lV+ ~ . 
o 

When B e = 0 the solution of Eq. (5) is easily obtained by means of the method of char- 
acteristics 

F (~, ~') = sul [@(T) -- ~ j t t  [O ('c) - -21 ,  ( l l b )  

where  H(x)  i s  t h e  H e a v i s i d e  f u n c t i o n ,  and ui[O(T)] s a t i s f i e s  c o n d i t i o n  (6)  

ui [O (x)] = Y[c('r)J/c('r)]o. (12)  

To u se  t h e s e  s o l u t i o n s  i t  i s  n e c e s s a r y  t o  know t h e  f u n c t i o n a l  d e p e n d e n c e  o f  t h e  d imen-  
s i o n l e s s  s u p e r s a t u r a t i o n  c(m) on t h e  f u n c t i o n  O(T), d e t e r m i n e d  in  ( 9 ) .  T h i s  d e p e n d e n c e  can 
be o b t a i n e d  by s u b s t i t u t i n g  F(m, s )  in  t h e  b a l a n c e  e q u a t i o n .  Using t h e n  ( l l a )  in  ( 8 ) ,  and 
i n t e g r a t i n g  o v e r  t h e  v a r i a b l e  s ,  we have  an i n t e g r a l  e q u a t i o n  d e s c r i b i n g  t h e  k i n e t i c s  o f  
s u p e r s a t u r a t i o n  r e m o v a l :  

o(x) 
c [0 (~)] = t - -  Q1 (B~ 0S [0 (m) --  ~]a/2 ~ _ ~ ,  J [c(~)] dV QI(B0) = 8"~B'~/2~ o ~ . I '  (v + 2,5) ( 13a )  

An e q u a t i o n  s i m i l a r  in  s t r u c t u r e  [13,  14] i s  a l s o  o b t a i n e d  f o r  s o l v i n g  ( 1 1 b ) ,  ( 1 2 ) :  

O(x) 

y Q~(O) = 2 ]/~q~--~Q. (13b) c [0 ('01 = t --  Q~ (0) [0 (~) - , c (~) Yo 
o 

By the same method one can reach an equation describing the time dependence of the mean 
separation radius <s(m)>: 

<s(~)> Q2(B~ ~ ] /-O(T)--~Y[c($)ld~,  
= n (T) o 

V-fin r (v + 1,5) Q2(Bo)=  , - - 0  y~v--+-~, Q 2 ( o ) =  ~ .  

(14) 
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Here 
0(~) 

n (~)- -  l~N (t) = F (% s) ds = ~ {J lc (~)l/c (~) Jo} d~ 
0 o 

is the formation number of the new phase in a volume of size s 

It follows from analyzing expressions (13) and (14) that the effect of fluctuations on 
the integral characteristics of the process is basically reduced to the appearance of the 
coefficients QI(B0) and Q2(B0), whose dependences on B 0 are shown in Fig. i. Since the quan- 
tity Qz (curve i) is larger than Ql(0), the presence of fluctuations in the growth rate of 
identical size extractions leads to a substantially faster drop in supersaturation [see (13a) 
and (13b)]. The quite weak B0-dependence of the coefficient Q2 (curve 2) implies that the 
mean size of formation of the new phase is practically unchanged in the presence of weak 
fluctuations (i.e., when B 0 < i). The following asymptotic result (B 0 << i) is valid for 
low fluctuation intensities 

F u r t h e r  a n a l y s i s  o f  t h e  p r o c e s s  r e q u i r e s  s o l u t i o n  o f  t h e  s u p e r s a t u r a t i o n  e q u a t i o n  ( 1 3 ) .  
Wi t h in  t h e  c o n t e x t  o f  i t s  n o n l i n e a r  f u n c t i o n a l  c h a r a c t e r ,  o b t a i n i n g  an e x a c t  s o l u t i o n  i s  
p r a c t i c a l l y  o u t  o f  t h e  q u e s t i o n .  However ,  t h e  p r e s e n c e  o f  t h e  n u c l e a t i o n  f r e q u e n c y  J ( c )  in  
t h e  i n t e g r a l  o f  ( 1 3 ) ,  s h a r p l y  d e c r e a s i n g  t h e  s u p e r s a t u r a t i o n  f u n c t i o n ,  makes i t  p o s s i b l e  
t o  c o n s t r u c t  a p p r o x i m a t e  t i m e  d e p e n d e n c e s  o f  t h e  s u p e r s a t u r a t i o n  f u n c t i o n .  On t h i s  b a s i s  
were  s o l v e d  p r ob l ems  o f  p h a s e  t r a n s i t i o n  k i n e t i c s  by t h e  i n t e g r a l  method [10-12]  and by t h e  
Laplace method [8, 9], developed for the kinetic regime of separation growth. Due to fea- 
tures of the higher derivatives of the supersaturation with respect to time at the moment 

= 0 for the investigated diffusion regime (3), the Laplace method is not applicable, since 
the following asymptotic dependences follow from (13) for short times 

2 (T)5/2" c (~) ~ i,  J [c (~)] ~ ]0, c [@ (~)1 = ~ --  -~ Q1 (B0) @ (15)  

At t h e  same t i m e  t h e  b e h a v i o r  o f  t h e  h i g h e r  d e r i v a t i v e s  c ( n ) ( T )  a t  t h e  p o i n t  T = 0 i s  d e t e r -  
mined by t h e  n o n a n a l y t i c  d e p e n d e n c e  

c (~) = i - (2/5) Q1 (Bo) ~s/2, 
following from (15). 

The construction of an approximate (and quite accurate) solution for problem (I)-(4) is 
nevertheless possible, and is considered below on the example of Frenkel'-Zel'dovich nuclea- 
tion kinetics [20], for which [9, 13, 20] 

I ic (~)____J = e x p  [ P g  (~)], g (~) = l - -  c (~) -2  <~ 0. 
c(~)d o 

The parameter P appearing here is the dimensionless activation energy of the generation 
process of a critical nucleus, referring to the square of the initial supersaturation [9, 13, 
20]. In real situations this quantity is quite large (P ~ 5-100). The function g(T) de- 
creases from its maximum value g(O) = 0 to -~ when �9 + ~. Therefore, exp [Pg(~)] is a rapidly 
vanishing function. This implies that the basic contribution to the integral in (13) is pro- 
vided by a close vicinity of ~ = 0. Expanding in a Maclaurin series in the variable g the 
slowly varying integrand function [@(T)- %]3n the following dependence is obtained 
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o(x) S(x) 
c[O(,t)]= l-OlO(~c)~/2 ~ exp[Pg(~,)ld~-4:- -~O~(-)('r) ~/2 ~exp[Pg(~)]dS q- .. .  (16)  

0 0 

Assuming that t h e  corresponding integrals in (16) converge  quite quickly, we let the 
upper integration limit @(~) tend to infinity, and use for c(g) the short-time asymptote 
(15). As a result, the following approximate dependence is valid for quite long times fol- 
lowing the beginning of the process 

? f c [ e ( ~ ) ] = l - - a l e ( G a / 2 + ~ 2 O ( ~ ) r / 2 + . . . ,  ~=O~ explPg(~)]d~, % = - g - 0 !  ~exp[Pg(~)ld~. (17) 
0 0 

The coefficients E i can be calculated numerically or approximately by the substitution 
( 1 5 ) :  

exp[Pg(~)l=exp{P[t--e(~)-2]}= exp P I - -  1-- Q~.v2 ~ e x p  - ' 5 "  " (18)  

Then 

=o,.~7o~ \ ~ 7  , 

On t h e  b a s i s  o f  Eqs, (9) and (17)  one o b t a i n s  f o r  t h e  f u n c t i o n  0 ( ~ )  
t i o n ,  whose s o l u t i o n  w i t h  t h e  obv ious  c o n d i t i o n  0(0)=:0  i s  

e(x) 
dO t_e1031~ ~ dO 
d"~- = ~ e2 0] /2 ,  T = t - -  8103/2-~ 820112 ~ 

0 

From (18) we can obtain a lower bound for which (17)-(20) holds: 

= 0,83S08 (p~f /~  . (19) 

a differential equa- 

(20)  

4 \--215 
0 (T) ~ (-~ PQI) <<i. 

It is necessary to note that continuation of the series (17) leads to the appearance 
of terms with negative powers 8 -~/2 (n ~ i, 3 .... ), diverging when T + 0. In this case, however, 
the transition conditions from (16) to (17) are violated, and it cannot be assumed that the 
coefficients g i are independent of T. Inclusion of the latter provides a correct, but some- 
what unwieldy mathematical problem. To sum up, expressions (17)-(20) determine the time 
dependence of the dimensionless supersaturation in the form of an implicit function. The 
comparison shown in Fig. 2 with the numerical solution (points, B 0 = 0) of Eq. (13) shows 
that the approximate solution (curve i, B 0 = 0) is quite accurate. The deviation from the 
numerically calculated c(T) value does not exceed 3% in the whole time interval, while the 
accuracy is enhanced with increasing parameter P. The supersaturation drops more quickly 
(curves 2, 3 for B 0 = 0.i and 0.3) with increasing fluctuation intensity (i.e., increasing 

Bo). 

One must also note a certain universality in the dependence c[O(T)] when in (17) one 
replaces @(z) by the function Q~/~@(J. 

A similar approximate estimate can also be selected for the mean separation radius of 
the new phase 

<s (T)> = Q20 (T) t/2 0,26243 Q~ O (T) -1/2. 
(pQ1) ~/5 

The characteristic dependences <s(T)> are shown in Fig. 2, where curves 4, 5 correspond 
to B 0 = 0 and 0.3. Since the mean radius characterizes the drop rate of supersaturation, 
at the initial portion of the curve the presence of fluctuations leads to somewhat larger 
values of the mean radius of separation. On a finite portio n the dependence of <s(T)> on 
B 0 provides an opposite effect, in agreement with the behavior of the curves c(x) for dif- 
ferent B 0 . 

The temporal flow evolution of the radial distribution function (lla) is sho~n in Fig. 
3 (B 0 = 0.i, curves i-4 correspond to increasing time ~). It is seen that the distribution 
is Gaussian, as is the case for the kinetic regime [5, 7], with dispersion 

n (x) 0 (x) 0,52486 + 0 (T)-' ff ~) + . ,  
(PO0 m (PO~) ~/~ -. 
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Ho [ 0,52486 ] 0,08854 
Bo<<t, <D>=n- ~ [ O ( z )  (pQ)2/~j+@(~)-' ( l - - t aBo) .  ,~(~)(pQ)4/5 

The effect of the diffusion growth regime (3) consists of a drift in the distribution 
curve toward larger radii which is nonuniform with the flow of time, as satisfied for the 
kinetic regime. With increasing fluctuation intensity of the growth rate (i.e., increasing 
B 0) the distribution curve is more spread out (Fig. 4) for a practically nonvarying mean 
radius (curves 1-3 correspond to B 0 = O, 0.1, 0.3). Generally speaking, the results on the 
evolution of the distribution function are the expected ones. This follows from the proper- 
ties of the evolutionary Fokker-Planck equation (I) utilized, recalling (for B 0 independent 
of r) the equation of convective diffusion in the space of separation radii. 

Note that it follows from the analysis of the problem that the separation kinetics of 
the new phase is determined by the initial time portion, i.e., by the nucleus formation pro- 
cess. It is precisely on this basis that one uses the method of approximate solution of 
the supersaturation equation (13). In the given temporal region, however, the characteristic 
formation radius of the new phase is comparable in magnitude with the critical nucleus radius. 
Generally speaking, therefore, the commonly used assumption r, = 0 is not always justified, 
since it corresponds to a time interval for which the effect of the boundary point r = r, is 
completely missing. The nature of the dependence c(~) or c[O(~)] is obviously unchanged for 
finite small r, values, but the coefficients e i are different. 

This situation requires further studies, so that at long times and following the start 
of the phase transition, when supersaturation becomes small, the recondensation process starts 
exerting a substantial effect. The theory of system evolution of this stage, developed by 
I. M. Lifshitz and V. V. Slezov [20], describes the asymptotic behavior of infinite long 
times (T + ~). So far, however, the following problem remains unanswered: for what super- 
saturation values is it necessary to take into account recondensation? Since the recondensa- 
tion effect is related to the effect of the boundary point r = r,(t), shifting with the flow 
of time to the region of large radii, the initial and concluding stages of the phase transi- 
tion are effectively related between them, despite the difference in the physical processes 
determining the system behavior at each stage. In this connection it is, obviously, possible 
to relate with each other the stages of nucleus formation, the separation stage of the funda- 
mental mass of the new phase and the recondensation phase, during subsequent account of the 
finiteness of the initial value of the critical nucleus radius. 
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THERMODYNAMIC PROPERTIES AND THERMAL EQUATIONS OF THE STATE OF 

HIGH-PRESSURE ICE PHASES 

V. E. Chizhov UDC 536.424 

Water is characterized by a surprising number of phases compared to other materials 
[I, 2]. Of the solid phases (ices), the hexagonal ice I is thermodynamically stable under 
natural conditions on earth, while the others are high-pressure phases. Thermod~lamic condi- 
tions for the existence of the high-pressure ices occur on several planets of the solar sys- 
tem and their satellites [3, 4]. The formation of various ice modifications has been observed 
in studying explosive impact loading of ice I. In this case a very complex wave picture is 
observed, which is related to phase transitions between the various ice modifications, and 
also to melting behind the compression wave front at relatively low pressure (on the order 
of 102-103 MPa) [5, 6]. 

Within the frame work of the mechanics of continuous media, a theoretical description 
of the processes of quasi-static and dynamic deformation of ice is based on studying the 
thermodynamic properties of various ice modifications, water, and their mixtures [7-9]. Here 
we continue the investigation, started in [i0] on ice I to pressures of 210 MPa. Based on 
a critical analysis of experimental data [2, 11-19], a corresponding theoretical study was 
made of the thermodynamic properties of ices I, III, V, and VI; thermal equations of state were 
constructed, which are applicable for temperatures of 233-293 K and pressures of 0-103 MPa. 

i. H20 Phase Diagram. In studying the thermodynamic properties of ices, we choose as 
independent variables the temperature T and the pressure p and the limits of their variation: 
233 ~ T~ 293 K and 0 ~p ~ 103 MPa. The corresponding set of points on the p-T phase dia- 
gram we denote by ~. The set ~ includes I) the thermodynamically stable states of ices I, 
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